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Abstract

This report is a companion to “Homogeneous Second-Order Descent Framework: A Fast
Alternative to Newton-Type Methods” [3]. In this report, we show how to allow inexactness
in the subproblems.

Contents

1 Introduction 2

2 Basic Results 3
2.1 Using inexact eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Global Convergence Analysis 5
3.1 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 The complexity of bisection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Dealing with the hard case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Conclusion 16

References 16

*Corresponding author. This research is partially supported by the National Natural Science Foundation of China
(NSFC) [Grant NSFC-72150001, 72225009, 11831002] and the Natural Science Foundation of Shanghai [23ZR1445900].
‡Equal contribution.

1



1 Introduction

Recently, Zhang et al. [7] proposed a homogeneous second-order descent method (HSODM)
unconstrained smooth optimization problem min

x
f(x). The method is inspired by the classic

trick in quadratic programming [6, 5, 2]. In their method, the iterates are constructed by solving
the Ordinary Homogeneous Model (OHM)

min
∥[v;t]∥≤1

ψk(v, t;Fk) := [v; t]TFk[v; t] with the aggregated matrix Fk :=

[
Hk gk

gTk δ

]
, (1.1)

where variables v ∈ Rn, t ∈ R and δ ≤ 0 is a prescribed parameter. The method sets the con-
trol term δ such that the [v; t] corresponds to the leftmost eigenvector of the aggregated matrix
Fk. Then the HSODM undergoes a simple strategy to find a step size ηk, e.g., by a line-search
method, and updates the iterate as xk+1 = xk + ηk(vk/tk) using the direction [vk; tk] gener-
ated by OHM. A specialized Lanczos method is used to solve the subproblem based on OHM.
Combining with a line-search strategy for ηk, the original HSODM needs O(n3ϵ−3/2) (exact
eigenvalues) and O(n2ϵ−7/4) (inexact eigenvalues) arithmetic operations to find second-order
stationary points nonconvex problems.

In He et al. [3], we extend the idea of homogenization and introduce the Generalized Homoge-
neous Model (GHM)

min
∥[v;t]∥≤1

ψk(v, t;Fk) := [v; t]TFk[v; t] with Fk :=

[
Hk ϕk(xk)

ϕk(xk)
T δk

]
, δk ∈ R, (1.2)

albeit now δk is allowed for some adaptiveness. Furthermore, we introduce the transformation
ϕk : Rn 7→ Rn in place of the gradient gk. We show this flexibility facilitates a machinery to
realize other second-order methods and, more importantly, a general homogeneous framework
in which new algorithms can be designed.

The purpose of this note is to show how to allow inexactness in GHMs when implementing an
inexact adaptive HSODM, to complement the convergence analysis in He et al. [3, Algorithm
2].

Notations We introduce the notations used throughout the paper. Denote the standard Eu-
clidean norm in space Rn by ∥ · ∥. Let B(xc, r) denote the ball whose center is xc and radius
is r, i.e., B(xc, r) = {x ∈ Rn | ∥x − xc∥ ≤ r}. For a matrix A ∈ Rn×n, ∥A∥ represents the
induced L2 norm. LetA⋆ denote the pseudo-inverse of the matrixA. We let PX be the orthogo-
nal projection operator onto a space, where X ⊆ Rn. We use mod to denote the binary modulo
operation. We say a vector y is orthogonal to a subspace S, i.e. y ⊥ S if for any nonzero vector
u ∈ S, uT y = 0.

Next, we introduce the following notations for eigenvalues of Hessian Hk. At an iterate of the
algorithm xk, we assume Hk has d (1 ≤ d ≤ n) distinct eigenvalues {λ1(Hk), ..., λd(Hk)}
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where λ1(Hk) < ... < λd(Hk) and S1(Hk), ...,Sd(Hk) are subspaces spanned by corresponding
eigenvectors. We sometimes use λmin, λmax as synonyms for λ1 and λd, respectively. We denote
the condition number ofHk as κ(Hk) =

λd(Hk)
λ1(Hk)

. Since the discussion on eigenvalues is mostly
restricted at the iterate xk only, we sometimes drop the index k for simplicity.

2 Basic Results

We present the basic results for homogeneous systems. Most materials are covered in Zhang
et al. [7] and He et al. [3]. We first present the properties if the eigenvalue is computed ex-
actly.

Lemma 2.1 (Optimality condition). [vk; tk] is the optimal solution of the subproblem (1.2) if and
only if there exists a dual variable θk ≥ 0 such that[

Hk + θk · I ϕk

ϕTk δk + θk

]
⪰ 0, (2.1)[

Hk + θk · I ϕk

ϕTk δk + θk

][
vk

tk

]
= 0, (2.2)

θk · (∥[vk; tk]∥ − 1) = 0. (2.3)

The following Lemma describes the upper bound for θk.

Lemma 2.2 (Upper bound of θk). In GHM, it holds that:

θk ≤ max{−δk,−λ1(Hk), 0}+ ∥ϕk(x)∥. (2.4)

Next, we move to the case where tk = 0. Let us recall the following lemmas on the spectrum of
Fk if ϕk ⊥ S1(Hk).

Lemma 2.3 (Lemma 3.1, 3.2, Rojas et al. [4]). For any q ∈ Sj(Hk), 1 ≤ j ≤ d, define

pj = − (Hk − λj(Hk)I)
⋆
ϕk, α̃j = λj(Hk)− ϕTk pj ,

then

(a) (λj(Hk), [0; q]) is an eigenpair of Fk if and only if ϕk ⊥ Sj(Hk).

(b) (λj(Hk), [1; pj ]) is an eigenpair of Fk if and only if ϕk ⊥ Sj(Hk) and δk = α̃j .

In He et al. [3], we introduce the concept of auxiliary functions to facilitate the discussion of
homogeneous algorithms. These functions are defined as the following.
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Definition 2.1 (Auxiliary functions of δk). At each iterate xk, consider the GHM with δk and let
vk, tk be the corresponding solution. ∆k < +∞ is an upper bound for the step.

∆k : R 7→ R+, ∆k(δk) :=

∥vk/tk∥2 if δk<α̃1

∆k o.w.

ωk : R 7→ R+, ωk(δk) := θ2k

hk : R 7→ R+, hk(δk) :=
ωk(δk)

∆k(δk)

He et al. [3] show that for ϕk ̸= 0, θk, ωk are decreasingly convex and continuous for all δk ∈ R.
If further tk ̸= 0, θk is differentiable such that d

dδk
θk = − 1

∆k+1 . Furthermore,∆k is continuous
for all δk ∈ R. This implies the following result.

Lemma 2.4. If ϕk ⊥ S1(Hk), hk(δ) is discontinuous at α̃1; otherwise, hk(δ) is continuous. More-
over, hk(δ) is differentiable in δ is monotone decreasing.

Based on these results, we can design a bisection procedure to find the some δk to locate hk at
some interval.

2.1 Using inexact eigenvalues

When using inexact eigenvalues, all mentioned quantities

(θk, vk, tk, hk)

are in approximate form to some extent. Under the Lanczos method, we denote γk, [v̂k; t̂k] as
Ritz pair that approximates leftmost eigen pair. The Lanczos method is terminated when the
error tolerance ek := θk − γk is sufficiently small, e.g., ek ≤ O(

√
ϵ). The following lemma from

Zhang et al. [7] describes the approximate optimal condition.

Lemma 2.5 (Approximate Optimal Conditions). If the Lanczosmethod is used to solve (3.3) such
that ek := θk − γk, then

Hkv̂k + ϕk t̂k + γkv̂k = rk (2.5a)

ϕTk v̂k + δk t̂k + γk t̂k = σk (2.5b)

Fk + (γk + ek)I ⪰ 0 (2.5c)

[v̂k; t̂k] ⊥ [rk;σk], (2.5d)

where [rk;σk] are the Ritz error.

We first discuss the case t̂k ̸= 0, as an analog of the hard case is identified if t̂k = 0 When
the subproblem is solved inexactly, the knowledge of the exact pair (θk, [vk; tk]) is not present.
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Hence both the auxiliary function hk(δk) and model functionmk(d) can only be approximated
in terms of γk, [v̂k; t̂k]. These can be defined as the following:

ĥk(δk) =

(
γk

∥d̂k∥

)2

, with d̂k = v̂k/t̂k, (2.6)

and the cubic model as

m̂k(d̂k) = f(xk) + ϕTk d̂k +
1

2
(d̂k)

THkd̂k +

√
ĥk(δk)

3
∥d̂k∥3. (2.7)

3 Global Convergence Analysis

Following [3], we present the complexity analysis of an inexact adaptive HSODM to find an
ϵ-approximate second-order stationary point defined as follows.

Definition 3.1. A point x is called an ϵ-approximate second-order stationary points if it satisfies
the following conditions.

∥∇f(x)∥ ≤ O(ϵ) (3.1a)

λ1
(
∇2f(x)

)
≥ Ω(−

√
ϵ). (3.1b)

In addition, we consider a broad class of objective functions satisfying the second-order Lips-
chitz continuity.

Definition 3.2. We call a function f hasM -Lipschitz continuous Hessian if for all x, y ∈ Rn,

∥∇2f(x)−∇2f(y)∥ ≤M∥x− y∥. (3.2)

Now we are ready to present the adaptive HSODM for second-order Lipschitz continuous func-
tions in Algorithm 1.

We furthermake the following assumption on functionϕk(xk) at every iteratexk inGHMs.

Assumption 3.1. Suppose that there exists a uniform constant ςϕ > 0. Given an iterate xk ∈ Rn,
if tk ̸= 0, then

∥ϕk(xk)− gk∥ ≤ ςϕ∥d̂k∥2 (3.4)

where d̂k = v̂k/t̂k.

We present the following stopping criterion to terminate a subproblem solver.

Condition 3.1 (Inexactness of the subproblem). Suppose that (3.3) is solved by the Lanczos
method at a prefixed error tolerance ek ≤ O(ϵ1/2). The Lanczos method is terminated if the fol-
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Algorithm 1: The Adaptive HSODM

1 Initial point x0 ∈ Rn, δ0 ∈ R, Ih = R, hmin > 0, parameter 0 < ι1 < η2 < 1,
ι1 > 1, ι3 ≥ ι2 > 1, 0 < ι4 ≤ 1, σ > 0;

2 for k = 0, 1, 2, . . . do
3 ϕk = gk, δk,0 = δk−1

4 for j = 0, 1, . . . , Tk do
5 Obtain the solution pair (γk,j , [v̂k,j ; t̂k,j ]) of the subproblem

min
∥[v;t]∥≤1

[
v

t

]T [
ĥk ϕk,j

(ϕk,j)
T δk,j

][
v

t

]
(3.3)

6 if t̂k,j = 0 then // check hard case, see Section 3.3
7 Go to Algorithm 2
8 Break
9 end

10 Set d̂k,j = v̂k,j/t̂k,j , ĥk(δk,j) :=
(
γk,j/∥d̂k,j∥

)2

;

11 if
√

ĥk(δk) ∈ Ih within tolerance σ then
12 Set d̂k := d̂k,j , δk = δk,j

13 Break
14 end
15 Update δk,j ;
16 end
17 Compute

ρk :=
f(xk + d̂k)− f(xk)

mk(d̂k)− f(xk)
;

18 if ρk > η2 then // very successful iteration

19 Ih =

[
max

{√
hmin, ι4

√
ĥk(δk)

}
,

√
ĥk(δk)

]
, xk+1 = xk + d̂k

20 if ι1 ≤ ρk ≤ η2 then // successful iteration

21 Ih =

[√
ĥk(δk)/ι1, ι2

√
ĥk(δk)

]
, xk+1 = xk + d̂k

22 else // unsuccessful iteration

23 Ih =

[
ι2

√
ĥk(δk), ι3

√
ĥk(δk)

]
, xk+1 = xk

24 end
25 end

lowing conditions hold:

∥ϕk + (Hk +

√
ĥk(δk)∥d̂k∥I)d̂k∥ ≤ ςr∥d̂k∥2 (3.5a)

γk + δk ≥ 0 (3.5b)√
hmin∥d̂k∥ ≥ ek. (3.5c)
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Note that the inexact conditions abovewill be satisfied gradually as the Krylov subspace evolves.
Here ςr can be set as any positive constant, which measures the relative error of the first-order
optimality condition in a similar manner to the conditions imposed in inexact Newtonmethods
[1]. The condition (3.5b) requires that the Ritz value is at least as good as δk. Such a require-
ment is discussed in [7], by using a skewed randomized initialization in the Lanczos method.
While we propose the last condition (3.5c), it is only required for convergence to second-order
stationarity, which may be violated at the beginning of the algorithm.

Establishing the convergence of such inexact variant of [3, Algorithm 2] induces a set of key
questions:

(a) How the inexactness propagates the descent lemmas.

(b) How to perform a valid bisection using ĥk(δ) instead of hk with the sameO(log(1/σ)) con-
vergence rate;

(c) How the perturbation idea works under inexact solutions as a correspondence to [3, Algo-
rithm 3]

These questions will be answered in order in the following subsections.

3.1 Convergence analysis

For now, we assume that the hard case t̂k = 0 does not occur, and these issues will be addressed
later. In the following, we show that the step will eventually become a successful step, with a
large enough ĥk and an upper bound of the auxiliary function ĥk.

Apparently, we introduce the following arguments for a descent step.

Lemma 3.1. Suppose d̂k satisfies (3.5b), then we have the following model decrease

f(xk)− m̂k(d̂k) ≥

√
ĥk(δk)

6
∥d̂k∥3 ≥ Ω(∥d̂k∥3). (3.6)

Proof. Note that from (2.5) and (3.5b), we have

(d̂k)
THkd̂k + γ∥d̂k∥2 + 2ϕTk d̂k = −δk − γk ≤ 0.

Then we have

mk(d̂k)− f(xk) = ϕTk d̂k +
1

2
(d̂k)

THkd̂k +

√
ĥk(δk)

2
∥d̂k∥3 −

√
ĥk(δk)

6
∥d̂k∥3

≤ ϕTk d̂k +
1

2
(d̂k)

THkd̂k +
γk
2
∥d̂k∥2 −

√
ĥk(δk)

6
∥d̂k∥3

= −1

2
(δk + γk)−

√
ĥk(δk)

6
∥d̂k∥3 ≤ −

√
ĥk(δk)

6
∥d̂k∥3

(3.7)
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Also, since ĥk(δk) ≥ hmin, this completes the proof.

Lemma 3.2. Suppose Assumption 3.1 holds, when the solution pair [v̂k; t̂k] of the HSODF sub-
problem satisfies (3.5a)-(3.5b), the auxiliary function ĥk(δ) has a upper bound

ĥk(δ) ≤ ςh := max

{
ĥ0(δ0), 9

(
ςϕ +

M

2

)2
}
. (3.8)

Whenever the value of ĥk(δ) reaches this upper bound, the iterates will be successful. As a result,
we have

(t̂k)
2 ≤ ςh

γ2k + ςh
. (3.9)

Proof. Notice f(xk + d̂k)− f(xk) = f(xk + d̂k)− m̂k(d̂k) + m̂k(d̂k)− f(xk), and

m̂k(d̂k)− f(xk + d̂k) = (ϕk − gk)
T d̂k +

1

2
d̂k

T
(Hk −∇2f(xk + ξd̂k))d̂k +

√
ĥk(δk)

3
∥d̂k∥3

≥ −ςϕ∥d̂k∥3 −
M

2
∥d̂k∥3 +

√
ĥk(δk)

3
∥d̂k∥3

=


√
ĥk(δk)

3
− M

2
− ςϕ

 ∥d̂k∥3, (3.10)

where ξ ∈ [0, 1]. Therefore, m̂k(d̂k)− f(xk + d̂k) ≥ 0 holds as long as ĥk(δk) ≥ 9(M2 + ςϕ)
2.

Then the ratio ρk follows,

ρk =
f(xk)− f(xk+1)

f(xk)−mk(d̂k)
=
f(xk)− m̂k(d̂k) +mk(d̂k)− f(xk+1)

f(xk)−mk(d̂k)

= 1 +
mk(d̂k)− f(xk + d̂k)

f(xk)− m̂k(d̂k)
≥ 1. (3.11)

Hence iteration k must be very successful, and we get the desired bound. If ĥk(δk) → ςh then
ρk → 1; i.e., it results in a successful iterate eventually. This implies (3.8). For (3.9), note that

γ2k
(t̂k)

2

1− (t̂k)2
≤ ςh,

rearrange the items and we have the result.

Lemma 3.3. Suppose that Assumption 3.1 holds, d̂k is a successful step, and also the inexact so-
lution pair satisfies (3.5a). Then we have

∥d̂k∥ ≥ Ω

(∥∥∥∇f(xk + d̂k)
∥∥∥ 1

2

)
. (3.12)
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Proof. From the second-order Lipschitz continuity of f , we have

∥∇f(xk + d̂k)∥ ≤ ∥∇f(xk + d̂k)−Hkd̂k − gk∥+ ∥Hkd̂k + ϕk∥+ ∥ϕk − gk∥

≤ M

2
∥d̂k∥2 + ∥Hkd̂k + ϕk∥+ ςϕ∥d̂k∥2

≤ M

2
∥d̂k∥2 +

√
ĥk(δk)∥d̂k∥2 + ςϕ∥d̂k∥2 + ςr∥d̂k∥2

≤
(
M

2
+
√
ςh + ςϕ + ςr

)
∥d̂k∥2.

(3.13)

The third inequality is from (3.5a).

Next, suppose there exists negative curvature at the current iterationxk, i.e., λ1(Hk) ≤ Ω(−
√
ϵ),

we will show that the step can also bring enough decrease.

Lemma 3.4. Suppose the inexact solution satisfies (3.5c), then we have

∥d̂k∥ ≥ − 1

2
√
ςh
λ1(Hk). (3.14)

Proof. Note that from (2.5c), we have

Fk + γkI + ekI ⪰ 0,

thus it follows that
γk =

√
ĥk(δk)∥d̂k∥

≥ −λmin(Fk)− ek

≥ −λmin(Hk)− ek.

Combine it with (3.5c), we have

2

√
ĥk(δk)∥d̂k∥ ≥ −λ1(Hk).

The above lemmas show that an inexact step satisfying Condition 3.1 guarantees descent prop-
erties as in the exact case, answering questions (a). For a correspondence, one can compare the
above lemmas with the exact case in [3, Lemma 3.1-Lemma 3.6]. The remaining analysis turns
out to be the same as that of the exact case.

Consequently, under assumptions on the quality of Ritz pair (Condition 3.1), we arrive at the
conclusion that the inexact adaptive HSODMhas the sameO(ϵ−3/2) iteration complexity as the
exact version. We omit the proof since one simply replaces exact quantities with inexact ones
provided above.

Theorem3.1. Suppose that the subproblem (3.3) is solved by the Lanczosmethodwith an error tol-
erance ek ≤ O(ϵ1/2) and the approximated solution satisfies Condition 3.1. The adaptive HSODM
takesO

(
ϵ−3/2

)
iterations to achieve a point xk satisfying ∥gk∥ ≤ O(ϵ) and λ1(Hk) ≥ Ω(−

√
ϵ).
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3.2 The complexity of bisection

The complexity rate cannot be established without the bisection method to locate δk. In this
subsection, we briefly check that the bisection method still works when using ĥ instead of h.
We show the disparity between h and ĥ can be measured by the quality of inexactness.

As we allow a tolerance of σ during the search procedure, we may connect the search interval
Îh to the underlying exact Ih of hk. We denote Îh : [ℓ, ν] as the target interval of ĥk.

Before we start, we made the following assumption.

Assumption 3.2. For the homogeneous system (3.3), assume that there exists σF > 0 such that
the following holds

vTFkv − λ1(Fk) ≥ σF . (3.15)

for some ∥v∥ = 1.

Note (3.15) holds without loss of generality if ∥Fk∥ ≫ ek; ad absurdum, the Lanczos almost
terminates immediately. The results below are from [7]. For completeness, we also provide
proof.

Lemma 3.5. Suppose that σF := λ2(Fk)− λ1(Fk) > 0, then for the [rk;σk] from (2.5), we have

∥[rk;σk]∥ ≤ O(
√
ek/σF ). (3.16)

and if v1 = [v1; t1] ∈ S1(Fk), then,

∥[v̂k; t̂k]− [v1; t1]∥ ≤ O(
√
ek/σF ). (3.17)

Proof. From (2.5), we have
(d̂k)

TFkd̂k + γk∥d̂k∥2 = 0. (3.18)

We can write d̂k = αv1 + s, where s ⊥ v1. Since d̂k is a unit vector, we have

α2 + ∥s∥2 = 1. (3.19)

Then from (3.18) we have

−θk + ek ≥ −γk = (d̂k)
TFkd̂k

= −θkα2 + sTFks

≥ −θkα2 + (−θk + σF )∥s∥2.

(3.20)

The second equality is obtained by expanding d̂k and s ⊥ v1. It implies

∥s∥2 ≤ ek
σF

. (3.21)
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Thus we have
rk = Fkd̂k + γkd̂k

= (Fk + γkI)(αv1 + s)

= α(γk − θk)v1 + (Fk + γkI)s.

(3.22)

Thus from (3.21), we can bound the norm of the residual:

∥rk∥ ≤ α(θk − γk) + ∥(Fk + γkI)s∥

≤ αek + ∥(Fk + γkI)∥
√
ek
σF

≤ αek + 2UF

√
ek
σF

.

(3.23)

Where UF denotes any upper bound of ∥Fk∥. For the second part, note

∥d̂k − v1∥ =

√
∥d̂k − v1∥2

=
√

⟨(1− α) + s, (1− α) + s⟩

=
√
2∥s∥2 ≤ O(

√
ek/σF ).

(3.24)

We now rewrite the auxiliary function in terms of tk,

ĥk(δk) = γ2k · g(t̂k), hk(δk) = θ2k · g(tk) (3.25)

and denote g(t) = t2

1−t2 ; note the upper bound of t̂k has been found in Lemma 3.2. Now we
locate ĥk with a box interval of hk as follows.

Lemma 3.6. The auxiliary function ĥk can be bounded both above and below by the function hk
in the following manner:

hk(δk)− ĥk(δk) ≤ 2
ςh
γk
ek + 2

√
ςh

(
γ2k + ςh

)3/2
γ2k

|tk − t̂k|+ o(|tk − t̂k|). (3.26)

and

ĥk(δk)− hk(δk) ≤ 2
√
ςh

(
γ2k + ςh

)3/2
γ2k

|tk − t̂k|+ o(|tk − t̂k|). (3.27)

Proof.

hk(δk)− ĥk(δk) = θ2kg(tk)− γ2kg(t̂k)

= θ2kg(tk)− γ2kg(tk) + γ2kg(tk)− γ2kg(t̂k)

= g(tk)(θk + γk)(θk − γk) + γ2k
d

dt̂k
g(t̂k)(tk − t̂k) + o(|tk − t̂k|)

≤ 2g(tk)θkek + γ2k

∣∣∣∣ d

dt̂k
g(t̂k)

∣∣∣∣ |tk − t̂k|+ o(|tk − t̂k|)

≤ 2g(tk)θkek + γ2k

∣∣∣∣ d

dt̂k
g(t̂k)

∣∣∣∣ |tk − t̂k|+ o(|tk − t̂k|).

(3.28)
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As for the part concerning g′(·), since g′(·) is monotonically increasing and t̂k has an upper
bound as in the previous analysis, we have

d

dt̂k
g(t̂k) =

2t̂k

(1− (t̂k)2)2
≤ 2

√
ςh
(
γ2k + ςh

)3/2
/γ4k.

Again with (3.28) we have

hk(δk)− ĥk(δk) ≤ 2
ςh
γk
ek + 2

√
ςh

(
γ2k + ςh

)3/2
γ2k

|tk − t̂k|+ o(|tk − t̂k|).

Similarly, we have

ĥk(δk)− hk(δk) = γ2kg(t̂k)− θ2kg(tk)

= γ2kg(t̂k)− γ2kg(tk) + γ2kg(tk)− θ2kg(tk)

≤ −
[
γ2k

d

dt̂k
g(t̂k)(tk − t̂k) + o

(
|tk − t̂k|

)]
≤ γ2k

∣∣∣∣ d

dt̂k
g(t̂k)

∣∣∣∣ · |tk − t̂k|+ o(|tk − t̂k|)

≤ 2
√
ςh

(
γ2k + ςh

)3/2
γ2k

|tk − t̂k|+ o(|tk − t̂k|).

To this end, the search procedure can be enabled if the inexactness of the Lanczos method is
sufficiently small. Since now the search process is based on ĥk, denote the target interval
Îh = [ℓ, ν], we have the following corollary.

Corollary 3.1. Suppose that there exists an interval Îh = [ℓ, ν] such that ĥk ∈ Îh, then the interval
Ih below where hk ∈ Ih holds that

Ih :=

[
l + 2

ςh
γk
ek + 2

√
ςh

(
γ2k + ςh

)3/2
γ2k

|tk − t̂k|, ν − 2
√
ςh

(
γ2k + ςh

)3/2
γ2k

|tk − t̂k|

]
.

Ignoring the high-order terms, a consequence of the above result is that if ĥk(δk) ̸∈ Îh, then
hk(δk) ̸∈ Ih. As long as the length of the interval Îh is sufficiently large, the exact interval Ih
will not be empty, and thus the bisection method is well-defined. Specifically, a nontrivial Ih is
guaranteed by allowing σ as the length of Îh.

Lemma 3.7. Suppose (3.5) hold and the length of the interval Îh being σ, then the length of the
interval Ih is at least σ

2 .

Proof. Note that when (3.5) and (3.32) hold, we have

2
√
ςh

(
γ2k + ςh

)3/2
γ2k

|tk − t̂k| ≤ 2
√
ςh

(
γ2k + ςh

)3/2
γ2k

√
ek
σF

≤ 1

8
σ, 2

ςh
γk
ek ≤ 1

8
σ.

12



Combining the above facts with the length of Îh we have the proof.

Summarizing the above results, we have the following theorem.

Theorem 3.2. At an iterate xk, suppose the subproblem (3.3) is solved to satisfy Condition 3.1 and
Condition 3.2 satisfied. Then the bisection method outputs some δk such that ĥk(δk) ∈ Îh within
tolerance σ in at most

O

(
log

(
ςhUϕUH

hminσ

))
(3.29)

iterations.

Proof. Combining all the above results, we notice that placing hk ∈ Ih can be done implicitly by
trying ĥk(δk) ∈ Îh. We let the bisection proceed if ĥk(δk) ̸∈ Îh, which implies hk(δk) ̸∈ Ih. As
|Ih| > σ

2 is guaranteed from a Îh of σ, the bisection method has the same number of arithmetic
operations as in the exact case.

3.3 Dealing with the hard case

Different from the method with exact eigenvalues, the inexactness of bisection procedure in-
tertwines with the hard case. When t̂k = 0, the inexact hard case follows from (2.5a)-(2.5d),

(Hk + γkI) v̂k = rk (3.30a)

v̂k ⊥ rk, ϕ
T
k v̂k = σk (3.30b)

Fk + γkI + ekI ⪰ 0, (3.30c)

where t̂k = 0 no longer indicates that we get the exact value of λ1(Hk). We follow the same
perturbation treatment as in [3, Algorithm 3], while using the Ritz pairs. For completeness, we
present the method in Algorithm 2. We denote k as the current iterate, then the subsequent
iterates are denoted by i: k, k + 1, ..., k + i and so forth.

Assume that ek satisfies the following condition.

Condition 3.2. Suppose the Lanczos method is performed until the inexactness ek satisfies

ek ≤ min

{
γkσ

16ςh
,
σ2σF
256

γ4k

(γ2k + ςh)
3

}
. (3.32)

While t̂k = 0 no longer induces the eigenpair ofHk, if rk, σk is tolerable, γk, v̂k still serves as an
approximation to the leftmost eigenpair ofHk.

Lemma 3.8. Suppose that t̂k = 0 occurs, we have

γk ≤ −λ1(Hk). (3.33)

13



Algorithm 2: Perturbation for the Hard Case

1 Input: Iterate k, xk ∈ Rn, gk,Hk, ĥk−1, δk−1 where gk ⊥ S1;
2 for i = 0, 1, . . . do
3 Set

ϕk+1 = ϕk +

(
sign(σk)

ςϕγ
2
k

4ν

)
· v̂k. (3.31)

Compute Ih := [ι2

√
ĥk+i−1, ι3

√
ĥk+i−1];

4 repeat // inner iterates j via bisection (see ??)
5 Obtain the solution [v̂k+i,j ; t̂k+i,j ] of the GHM subproblem

min
∥[v;t]∥≤1

[
v

t

]T [
ĥk ϕk+i

(ϕk+i)
T δk+i,j

][
v

t

]

set d̂k+i,j = v̂k+i,j/t̂k+i,j , ĥk+i :=
(
θk+i,j/∥d̂k+i,j∥

)2
;

6 Update δk+i,j , increase j = j + 1

7 until
√
ĥk+i ∈ Ih within tolerance σ;

8 d̂k+i = d̂k+i,j ; δk+i = δk+i,j ;
9 Compute

ρk,i =
f(xk + d̂k+i)− f(xk)

mk(d̂k+i)− f(xk)

if ρk+i ≥ ι1 then
10 break
11 end
12 end

Moreover, suppose that v̂k = αv1 + s, where v1 is the eigenvector correspond to λ1(Hk), s ⊥ v1,
we have

α ≥
√
1− ek

σH
. (3.34)

σH := λ2(Hk)− λ1(Hk).

Proof. Multiply both sides of (3.30a) by v̂k and note that v̂k ⊥ rk, we have

v̂TkHkv̂k = −γk∥v̂k∥2,

which implies (3.33). To verify (3.34), just note that the previous lemma just tells us that

∥s∥ ≤
√

ek
σH

,

14



combine it with α2 + ∥s∥2 = 1 and we have (3.34).

In the exact case, for each of the following iterate i, we perturb ϕk+i based on the preceding
hk+i−1. When gradually increasing hk+i, we use the same bisection method indexed by j to
find δk+i,j . We show that it will finally produce a successful iteration; once it does, it must satisfy
the Assumption 3.1. We show these goals can be achieved via Ritz vectors.

Lemma 3.9. Suppose at the k-th iterate t̂k = 0 and the search interval of ĥk+1 is [ℓ, ν]. Then if
ϕk is set according to (3.31), and inexactness measure ek+1 satisfy

ek+1 ≤ ek ≤
−2∥ϕk∥+

√
4∥ϕk∥2 +

ςϕγ2
k

ν

(
∥ϕk∥+

ςϕγ2
k

2ν

)
2∥ϕk∥+

ςϕγ2
k

ν

, (3.35)

then the subsequent tk+1 ̸= 0, i.e., the hard case is eliminated.

Proof. Weprove by contradiction, suppose that tk+1 = 0, denote v̂k+1 = α1v1+s1, by Lemma3.8,
we have α1 ≥

√
1− ek+1

σH
. Then we have

v̂Tk+1ϕk+1 =

(
ϕk + sign(σk)

ςϕγ
2
k

4ν
v̂k

)T

v̂k+1

= ϕTk v̂k+1 + sign(σk)
ςϕγ

2
k

4ν
v̂Tk v̂k+1

= ϕTk v̂k + ϕTk (v̂k+1 − v̂k) + sign(σk)
ςϕγ

2
k

4ν
v̂Tk v̂k+1

= σk + ϕTk (v̂k+1 − v̂k) + sign(σk)
ςϕγ

2
k

4ν
v̂Tk v̂k+1

= σk + ϕTk (α1v1 + s1 − αv1 − s) + sign(σk)
ςϕγ

2
k

4ν
(αα1 + sT s1).

In the last line, we plug in v̂k+1 = α1v1 + s1 and v̂k = αv1 + s. Using the fact that ek+1 ≤ ek,
we have

|v̂Tk+1ϕk+1| ≥ σk +
ςϕγ

2
k

4ν

(√
1− ek+1

σH

√
1− ek

σH
− ∥s∥∥s1∥

)
− ∥ϕk∥ ∥(α1 − α) v1 + s1 − s∥

≥ σk +
ςϕγ

2
k

4ν

(√
1− ek+1

σH

√
1− ek

σH
−
√

ek
σH

√
ek+1

σH

)
− ∥ϕk∥ (|α1 − α|+ ∥s1∥+ ∥s∥)

≥ σk +
ςϕγ

2
k

4ν

(
1− 2

ek
σH

)
− ∥ϕk∥

(
1−

√
1− ek

σH
+ 2

√
ek
σH

)
> σk +

ςϕγ
2
k

4ν

(
1− 2

ek
σH

)
− ∥ϕk∥

(
ek
σH

+ 2

√
ek
σH

)
.

The last inequality is because of 1 −
√
1− x2 ≤ x2 for 0 < x < 1. Thus from (3.35) we know

that
|v̂Tk+1ϕk+1| > σk,

which contradicts tk+1 = 0.
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We now show Algorithm 2 gradually produces ϕk+1 that satisfies Assumption 3.1.

Lemma 3.10. Suppose at the k-th iteration the hard case occurs, we perturb the gradient as in the
way (3.31) and find δk+1 such that ĥk+1(δk+1) ∈ [ℓ, ν] with ek+1 ≤

√
hmin∥d̂k+1∥, then at the

(k + 1)-th iteration, the following relation holds

∥gk+1 − ϕk+1∥ ≤ κϕ∥d̂k+1∥2.

Proof. We have already shown that tk+1 ̸= 0 in Lemma 3.9, thus dk+1 is well-defined, from
(3.30c) we know that√

ĥk+1(δk+1)∥d̂k+1∥ ≥ −λ1(Fk+1)− ek+1 ≥ −λ1(Hk)− ek+1.

Rearrange items we have

∥d̂k+1∥ ≥ −λ1(Hk)

2ν
≥ −γk

2ν
,

since we do not update when a hard case occurs,

∥gk+1 − ϕk+1∥ = ∥gk − ϕk+1∥ =
ςϕγ

2
k

4ν
ςϕ∥d̂k+1∥2.

The rest is to showwhen the hard case occurs, the Algorithm 2 eventually produces a successful
iterate. The proof is same as in the original paper [3, Theorem 3.5], we omit it here.

Theorem 3.3. Algorithm 2 takes at most ⌊logι2
ςh

ĥk−1(δk−1)
⌋ + 1 iterations to obtain a successful

step. Furthermore, Assumption 3.1 must hold.

4 Conclusion

In this report, we discuss the complexity analysis of the inexact version of adaptive HSODM
[3, Algorithm 2]. The method allows inexact solutions in GHMs by the Lanzcos method. We
discuss the convergence analysis, bisection method, and the hard case in the inexact setting
based onRitz vectors. All of the necessary elements in the exact case are replaced by their inexact
counterparts. We validate that the inexact adaptive HSODM has the same iteration complexity
as the exact version.
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